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Machine Bias
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Biases in Al systems
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Fairness in Machine Learning — Binary predictions
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Amazon scraps secret Al recruiting tool that
showed bias against women

The Apple Card Is the Most High-Profile
Case of Al Bias Yet

Machine Bias

Binary decisions: Good vs. Bad outcome

Applications: Recidivism prediction, Loan approval, Job application



Fairness in Machine Learning — Typical setup

Example: Lending

A sensitive attribute Gender (Men/Women)
X “relevant” features Salary, Debt history

Y actual outcome Repaid / Default

Y = f(X, A) predictor Classifier

S = g(X, A) score function | Credit score
(can be turned into binary
decision)




Fairness criteria in Machine Learning

Demographic parity
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Calibration within groups
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- Incompatibility

S. Corbett-Davies et al. 17
J. Kleinberg et al. ‘16, A. Chouldechova '16
https://research.google.com/bigpicture
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Trade-offs

Many more definitions...
- More parity measures

« . . Arvind Narayanan
- Individual metric-based fairness e
. Counterfactual fairness

Translation tutorial:

21 fairness definitions and their politics

And trade-offs:

- Between different measures of group fairness
- Between group fairness and individual fairness
- Between group fairness and group fairness

- Between fairness and utility
Dwork et al., Individual fairness, 2012
Kusner et al., Counterfactual fairness, 2017
Kearns et al., Preventing fairness gerrymandering, 2017



Fair algorithms

Representation learning approach

1. Pre-processing
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Learning fair representations
2.  Optimization at training time

Empirical risk minimization with

constraint, regularization term
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Additional references

Tutorials
Hardt and Barocas, tutorial @ NeurlPS 17

Narayanan @ FAccT ‘18

Surveys
Chouldechova and Roth, The frontiers of fairness in machine learning
Corbett-Davies and Goel, The measure and mismeasure of fairness
Barocas, Hardt, Narayanan, Fairness and machine learning: limitations and

opportunities. [Book]
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Biased data?
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Five potential sources of harm (Suresh and Guttag, 2019)




Parity vs. preference

When subjects have different preferences /
utilities, should they be given the same
predictions?

— Personalization

Preference guarantees
with concepts like “envy-freeness”: no one should prefer someone
else’s model to their given model.

Zafar et al. '16, Ustun et al. ’19, Balcan et al. ’19, Kim et al. ‘20

¢he New ork eames

Facebook Engages in Housing
Discrimination With Its Ad Practices,
U S Says
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Are the algunthms that power
dating apps racially biased?

If the algorithms p ring these ma hmkgy ems contain pre-existin

biases, is the onu d ting apps to counteract them?




Discussion

e Interdisciplinarity

o “Mathematical” fairness for computer scientists vs. fairness for ethicists,
philosophers, legal scholars, economists...
o« Context

o Applications: which fairness definition for which specific context? should ML be
used at all?

o Fairness for unobserved characteristics: ethnicity, sexual orientation.

o Complex pipelines

o Explainability



